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1. INTRODUCTION
Adaptive arrays based on the LMS algorithm of Widrow, et al El]

are very useful for protecting communication systems from interference

[2,5]. These antennas can automatically null interference signals from

arbitrary arrival angles, with arbitrary polarizations [6,7], and of ar-
bitrary power.*

A subject that has received little attention in the literature,

however, is the performance of these arrays with modulated interference.

F Most studies on adaptive array performance have assumed interference

signals with constant power. An interference signal whose power varies

with time, however, may be more difficult for the array to null. If the

modulation rate of the interference is close to the natural response

rate of the array, such a signal may keep the array in a perpetual

transient state.

In this paper, we examine the performance of an LMS array with

such a signal, a pulsed interference signal. Pulsed interference is

perhaps the simplest type of modulated signal to study, because at any

given time the interference is either on or off. Pulsed interference

causes the array weights to alternate between two sets of values. When

the pulse is on, the weights move toward values that null the interference.

When the pulse is off, the weights relax back toward the values they

would have without interference. If the pulse width or the time between

pulses is close to the weight time constants, the array weights may never

reach steady-state. If the array does not form a steady-state null,

the output interference power is higher during the pulse than it would

be if the interference were continuous.

As we will show, pulsed interference has two effects on array

performance. First, it causes the array to modulate the desired signal.

Second, it causes the output signal-to-interference-plus-noise ratio

(SINR) to vary with time. In this paper we relate these effects to the

interference pulse width, repetition frequency, power and arrival angle,

as well as to the desired signal power and arrival angle.

In spite of the fact that pulsed interference appears more dif-

*Within the dynamic range of the circuitry.
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ficult for an adaptive array to null, we shall show that in fact such

interference is not a major problem for the array. First, we find

that the envelope modulation is small unless the interference arrival

angle is very-close to that of the desired signal. (In this case, con-

tinuous interference is also a problem!) Second, we show that although

pulsed interference does reduce system SINR, the degradation is not

disastrous. (To evaluate this effect meaningfully, we assume the array

is used in a digital communication system and compute the effect of

the SINR change on bit error probability.)

In Section 11 of the paper, we define the array and the signals,

and formulate the necessary equations. Section III contains the results.
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II. FORMULATION

Consider the 3-element adaptive array shown in Figure 1. The

elements are assumed isotropic, noninteracting and a half wavelength

apart at the signal frequency. The analytic signal x.(t) received on
3

element j is multiplied by a complex weight w. and summed to produce the
array output S(t). The signals from the 3 elements are combined with an

LMS processor [1], for which the weights satisfy the system of equations

dW + k W = kS(1)

where k is the LMS loop gain, W (w, w2, w 3T is the weight vector,

is the covariance matrix,

= E (x*XT), (2)

and S is the reference correlation vector,

S = E (X r(t)). (3)

Here X is the signal vector X (x1(t), x2(t), x3(t))T, and (t) istheHereX i thesigal ecto X x nd '"(t isthe

reference signal [3]. Also, E (-) denotes expectation, * complex conju-

gate and T transpose.

We assume a desired signal and a pulsed interference signal are

incident on the array, and also assume thermal noise is present in each

element signal. The signal vector X then contains three terms,

X = Xd + X + X, (4)

where Xd, Xi and Xn are the desired, interference and thermal noise

vectors, respectively. These vectors are defined as follows.

First, we assume the desired signal is a CW signal incident from

angle od relative to broadside. (o is defined in Figure 1.) The desired

signal vector is then
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Figure 1. A 3-Element Adaptive Array



A ( wt + 

(d)

Xd =Ade Ud 9 (5)

where Ad is the amplitude, wo the carrier frequency, and 'd the carrier

phase angle. °Ud is a vector containing the interelement phase shifts,

Ud =l,e d, e 2 d )T (6)

with

Od = r sin od .  (7)

We assume Vd is a random variable uniformly distribdted on (0, 27).

Next, we assume the interference is a pulse modulated carrier, as

shown in Figure 2, arriving from angle ei . We let T be the pulse width

and Tr the pulse repetition period. The pulse repetition frequency (PRF)

is then fr = 1/Tr and the duty cycle is 6 = T/T . The interference signal

vector is

Xi = ai(t)eJ(wot + )Ui (8)

where ai (t) is the envelope modulation, q. the carrier phase, and

-J~i - J2¢i )T

Uw : (1, e , e , (9)

with

0i =r sin oi . (10)

The modulation a. (t) is given by1

ai.(t) = {A,: nTr < t < nTr + T (11)

0 nTr + T < t < (n + 1) Tr

__! h
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Figure 2. The Pulsed Interference Signal

where n is an integer denoting the period and A. is the pulse amplitude.

Aie( ot + i.)

Thus, Xi is equal to A ej 0 1 Ui wnen the pulse is on and is zero

when it is off. We assume P. is uniformly distributed on (0, 2,R) and1
statistically independent of d"

Finally, the thermal noise vector is

Un  n (t) , T, (12)

where the n(t) are zero-mean, gaussian thermal noise voltages. We
assume each n.(t) is statistically independent of the others and has

variance 02:

E [nr(t)ne (t)] = jk, (13)

where 6jk is the Kronecker delta. Also, we assume the n t) are statis-

tically independent of Cd and *i"
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From Xdv Xi and Xn , one finds that the covariance matrix in (2)

has one of two forms, depending on whether the pulse is on or off. When

the interference is on (for nTr < t < nTr + T),

O = 2 1 + A 2U T + A i2U Ui T (14)

arid when the interference is off (for nTr + T < t < (n+l)T r),

Tr

= 21 + Ad2UdUdT , (15)

where I is the identity matrix. The pulse modulation causes 0 to switch

back and forth between these two forms.

To compute the reference correlation vector S, the reference

signal must also be defined. Let r(t) be a CW signal of amplitude Ar
coherent with the desired signal,*

r(t) = Ar eJ 0 (16)

Then since Xi and Xn are uncorrelated with r(t), (3) yields

S = ArAdU (17)
r d d*

Now consider what happens with pulsed interference. In general,

for a given o and S, the transient solution to (1) has the form

W(t) = e- kot [W(O) - 0-1S] + o'1 S, (18)

*In practice, (t) does not need to be identical to the desired signal,
but it must be correlated with the desired signal and uncorrelated with
the interference. Methods of obtaining reference signals in practical
communication systems have been described in [3-5].
**Matrlx exponentials such as e-kot are discussed in [8,9].
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where W(t) is the weight vector at time t and W(O) is its initial value

at t=O. W(t) varies exponentially from W(G) at t=O to its final value

o-IS at t=-. Suppose the weights are initially in steady-state with the

array receiving desired signal but no interference (i.e., W(O)= OIS).
0

Also, suppose the first interference pulse arrives at t=O. At this in-
stant, the covariance matrix changes from 40 to tp The weight vector

begins an exponential transient starting from O-1S and going to P-IS.
0 p

If the pulse length T is long compared to the duration of the transient,

the weight vector will reach the new steady-state value C'IS. But if T
p

is too short, the transient will not be finished when the pulse ends. In

either case, at t=-r the interference disappears. The covariance matrix

again becomes v , and the weight vector begins a second transient returning0

to o -IS. Depending on the time duration Tr- 1 when the pulse is off, the
weight vector may or iray not finish this second transient before the next

pulse occurs.
In general, when pulsed interference first appears, the weight

vector is a nonperiodic function during the first few pulse repetition
periods. After an initial interval, however, the weight vector settles
into a periodic behavior. The duration of the initial interval depends

on the array time constants and on the initial weight vector (as will
be discussed below.) If either [ or Tr- T are long compared to the dur-

ation of the weight transients in their respective intervals, the weight

vector will reach steady-state during one of both of these intervals.

In this case, the weight vector will essentially be periodic from the
first pulse on. However, if both t and Tr- T are too short for the tran-
sients to finish during either interval, the weights will not have com-

pleted one transient before the next one begins. Several cycles of the

pulse repetition period will then be required for the weight vector to
become periodic. After an initial interval, however, the weight vector

always becomes periodic.

Before examining the initial transient behavior in detail, we
first consider the periodic case. Suppose a typical period of the

interference begins at t=O. Let the weight vector at t=O be W . During

the interval 0 < t < T, the weight vector is given by

____________________________________________,
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-k¢ t

W(t) : e P [WI - plS] + Fp1S. (19)
p p

Let the value of W(t) at the end of the pulse (at t=T) be W2

- T

W = e P [W1 - ipS] + 4p-S. (20)
2 p p

W2 is then the initial value for the weight transient that occurs during

the interval when the pulse is off. Hence, for t < t < Tr
-k¢ (t-T)

W(t) = e 0 [W2  -Is] + IS. (21)

Since W(t) is periodic by assumption, at t=Tr W(t) will have returned to

its initial value W1. Thus

W= e 0 [W 2  0-1s] + 0-1s. (22)

Combining (20) and (22) allows us to solve for the two unknown weight

vectors W1 and W2. (20) and (22) together yield the system of equations

-kp T -ko(T T)
-e I I- e r

• - - -------- --.--------------------
- (T r-T -kpt T

I -e2 ,[I - e ]p 'S
2 p

(23)

where we use a partitioned matrix notation. For a particular choice of

signal parameters Ad9 0d Ai, o i , T and Tr ' these equations may be solved

for W1 and W2 and then the behavior of W(t) during the interference re-

petition period may be found from (19) and (21).

Now consider the initial transient interval again. Suppose the

initial weight vector at t=O is W(O). W(O) could be the steady-state
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weight vector with no interference, or could just be an arbitrary initial

weight vector. If the weight vector is W(O) when the pulse begins, it

will be

Wa = e P [W(O) - 1is ] + Pp 1 S (24)

when the pulse ends. Wa is the initial value for the second transient

during the interval < _ t < Tr when the pulse is off. At the end of this

transient, the weight vector will be Wb:

Wb = e r )[Wa - &iS] + 0'is. (25)

Now consider the quantity Wb- W. If we substitute (24) for Wa into

(25), and substitute (20) for W2 into (22), and then subtract the second

result from the first, we obtain

-ko(Tr- T) -k

Wb - W1 = e oP [W(O) - Wi]. (26)

This result shows how the difference between W(O) and the periodic value

W1 decays in one period. After one period, an initial difference W(O)-W 1

has been reduced to e [ r P LW(O) - WI]. To determine how long

it takes for the weight vector to settle into a periodic behavior, let M

be the matrix

M = *o(T r- T) + pT. (27)

Suppose M has eigenvalues ; iand eigenvectors ei. (M is Hermitian so the

iare real and all three eigenvectors exist.) Using a spectral decomp-

osition formula [10,11], we may write e-kM in the form

-kM -k(T- )-kpo 3 -kg i  (e-k = e a : .iZ e eie i , (28)
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(where t denotes transpose conjugate), and hence

Wb W 3 e i eieit[W(O) -W1]. (29)

From this form it is clear that the decay of W(O)-W1 per pulse repetition

period depends on the direction of W(0)-W I relative to the eigenvectors

e. Components of W(O)-W 1 parallel to eigenvectors associated with large

eigenvalues decay rapidly, whereas components parallel to eigenvectors

associated with small eigenvalues decay slowly. The duration of the

initial transient interval can be calculated in this way. We shall not

pursue the initial transient behavior in further detail here. We merely

note that it is clear from (26) that the weight vector always approaches
a periodic behavior after an initial interval. In the remainder of this

paper, we concentrate on the periodic weight behavior and its effect on

array performance.

Since pulsed interference causes time-varying weights, such in-

terference causes the response of the array to the desired signal to be

time-varying. Thus, the array becomes a time-varying channel. (Such a

channel is also called a multiplicative channel or a frequency disper-

sive channel [12]). For a given weight vector W, the desired signal at

the array output is

)d(t) =WTxd = AdWTUdeJ(30)j( t+ *d ) .  (30)

Since W is time-varying, the output desired signal is modulated. To

study this modulation, we define

ad(t)e"d(t) AdWTUd .  (31)

Then ad(t) = AdW TUdi is the envelope modulation and nd = )WT Ud is the

phase modulation.
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The time-varying weights also cause the signal powers at the

array output to vary with time. The output desired signal power is

P{d E Sd(t)12}= Ad 2 1 Ud12, (32)
2 12

the output interference power is
1

Pi = 21WTUd12 : pulse on (33)

0 : pulse off

and the output thermal noise power is

P 2 (34)n 2

Hence the output interference-to-noise ratio (INR) is

P. ( iwTui 12

Output INR T - 2i : pulse on
P 

(35)
n 0 pulse off

and the output signal-to-interference-plus noise ratio (SINR) is

., ~dlWTUd 1I
pd1W T___d_1 : pulse on

SINR n iIwTuij2 + WtW

p +p(36)i n %dIWTUdI
+ n1: pulse off

WtW

In these equations, we use the notation

Ad2

-d - - input SNR per element, (37)
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and A 2

= input INR per element. (38)
1 o2

For a given set of signal parameters, (23) can be solved for W

and W2. The weight vector W(t) at a given instant of time may then be

computed from (19) for 0 < t C T or from (21) for T < t < Tr . From

W(t), the desired signal modulation and the output INR and SINR may be

computed as functions of time using the above formulas.
In carrying out these calculations, it is convenient to use a

normalized time variable. In (19), we let
-k opt -0 (ko 2t) -0p t

e = e p-e , (39)

where Opn is *p normalized to 02:

1 O*UT *T
pn 7ddd ++ CUAUi (40)

and where t' is the normalized time variable,

to = ka2t. (41)

Similarly,

-k~ot -*on(ko2 t) -Cont'

e =e on e on (42)

where

on =  +dUdUd (43)

In Section Il, we shall specify the interference signal in terms of its

normalized pulse width r'=ko 2r, repetition time T r=ko2Tr and PRF

fr = f /ko 2 . (Duty cycle is not affected by this normalization.)
In Section III, we shall also describe the envelope modulation

in normalized form. We define the normalized envelope ad (t) to be
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I! ad(t) IWTUdI

ad (t) (44)
AdlWoT UdI W ITd

where = 4PIS. Thus ad'(t) is the envelope modulation normalized to

its value in the absence of interference. Also, because the interference

is a periodic waveform, so is ad'(t). To describe the frequency dispersion

of the array, we shall expand ad' (t) in a Fourier series,

.2int

ad '(t) C e j  Tr-n = n ,( 4 5 )

where the coefficients cn are given by

1 Tr 2ifnt
Cn  a- (t)e- T dt, (46)n T r a0 d 'r

In Section III-F, we present typical frequency spectra of ad'(t).
Finally, before presenting our results in Section Il1, we mention

that in order to solve (23) for W1 and W2, one must calculate the matrices

e -¢pn and e on Tr This can be done by means of Sylvester's
-¢pnT'

Theorem [13]. For e , Sylvester's Theorem is straightforward. One

finds

e 1 3 _
e = e Mi, (47)i=1

where a(p-jI

Mi  = 1 • (48)

j 1 (x J)

and where x. is the ith eigenvalue of o From (40), these eigenvalues are

found to be

ti,'
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X1  1, (49)

and

+ + )2 + 4 TU* 2 (02,3  2 d +  2 9(&d - ) + 4 d&lUdTU1 2 (50)

For eonTr ) one must be careful in using Sylvester's Theorgm,' . -%n(TI - '
because oon has a repeated eigenvalue The expansion for eon r
contains only two terms:

-¢on(T; - T,)T) - 5 (T - T()e on= e 4r M4 + 5 M ,  (51)

where

on 5
M ,(52)

A4 -Ak

4 5

and

on 41

M 5 A (53)
A5 -Ak

*The expansion of amatrix function with Sylvester's Theorem is usually
much more complicated when the matrix has repeated eigenvalues [14]
than when all its eigenvalues are distinct [15]. However, a Hermitian
matrix has a full set of eigenvectors, even if it has repeated eigenvalues.
For this reason, Sylvester's Theorem for such a matrix can be derived
using the simple method given by Hildebrand [15] except that with repeated
eigenvalues one must start with the reduced characteristic equation [16]
instead of the full Cayley-Hamilton Theorem [16]. Sylvester's Theorem for
a Hermitian matrix with repeated eigenvalues contains fewer terms than
with distinct eiqenvalues, because there is only one term in the expan-
sion for each repeated eigenvalue.
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A4 and x5 are the two distinct elgenvalues of ton' given by

x4 = 1, (54)

and

x5 = 1 + U d ' (55)

(oon has two eigenvalues equal to 1.)

With this background, we now discuss the numerical results ob-

tained from these equations.
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III. RESULTS

In this section we describe the performance of the array in the

presence of pulsed interference. In Part A, we show typical curves of

desired signal modulation, output INR and SINR as functions of time.

Parts B-E show how the signal parameters affect desired signal modulation.

In Part F, we show typical output desired signal spectra, to illustrate

the frequency dispersion of the array. Finally, in Part G we assume

the array is used in a digital commlunication system and show how pulsed

interference affects bit error probability.

A. Typical Waveforms
First, we show typical curves of desired signal modulation, output

INR and SINR as functions of time.

We begin with the envelope modulation. Figure 3 shows the desired

signal envelope modulation for e d = 0, 0 = 50, &d =10 dB, Ei = 20 dB,

6= .1 and f r1 = 1. The graph shows a (t') versus t over one period of

the modulation, 0 < t' < T'. This is a typical curve, and it is seen that

the interference produces substantial envelope modulation.

Next, we consider the phase modulation. When 'id(t) is calculated,

one discovers an interesting result: pulsed interference does not produce

any phase modulation, regardless of the signal parameters. This result

occurs because with pulsed interference, the weight vector moves back and

forth between two values, 4AS and oF'S. It can be shown that when the
0 p

weight vector is equal to either of these values, the desired signal at

the array output is matched in phase to the reference signal. In addition,

it turns out that during an exponential transient from one of these values

to the other, as in (19) or (21), the desired signal phase at the array

output remains fixed for all t'. (This statement can be proven analyti-

cally, but the details are tedious and we omit them here.) As a result#

there is no phase modulation, regardless of the signal parameters Ad 0d

A, e. r or T r
It should be pointed out that nd(t) is zero only after the array

weights are periodic. Phase modulation can occur during an initial weight

transient before the weights have become periodic. The amount of phase

modulation during an initial transient depends on the initial weight vector
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when the interference first appears. If the array weights are initially

aligned on the desired signal (i.e., if W(O) = o _1S), there will be no
0

phase modulation during the initial transient. But if the initial weight
vector is such that the desired signal at the array output is not in phase
with the reference signal, phase modulation will occur. However, once
the initial transient period is over, there is no further phase modulation.

Next, we consider the output INR and SINR. Figures 4 and 5 show
the output JNR and SINR for the same conditions as in Figure 3. Each
quantity is shown as a function of time over one period of the interference.
Figure 4 shows the interference pulse as it appears at the array output.

Since the array is nulling the interference, the output INR drops during

the pulse. The SINR in Figure 5 has the corresponding behavior. When
the interference disappears at the end of the pulse, the SINR jumps up.

These first curves are intended merely to illustrate typical array

behavior. In Parts B-F below, we examine in detail the effect of each

signal parameter on the desired signal modulation. Also, to evaluate

the significance of the time-varying SINR, in Part G we assume the desired
signal is a digital cormmunication signal and compute the effect of the
SINR on the bit error probability.

In order to describe the modulation effects in Parts B-E, we now
define certain quantities that will be useful to characterize the modu-

lation. First we define a max to be the largest and ami the smallest
value of a (t')during the pulse repetition period. Then we also define

a -a.
max mcLn

M a -_.(56)
max

In the sequel, we examine how a mxand m depend on the signal parameters.
a Txis a useful quantity to study because it measures how much the de-
sired signal is suppressed at the peak of its envelope. With no inter-
ference, a mxis unity. With interference, a mxdrops below unity. We

shal rfe toa ax asteenvelope peak. m is of interest because
it measures the amount of envelope modulation. Since m is the peak-to-
peak envelope variation normalized to the peak, it may be thought of as
"fractional" modulation, analogous to percentage modulation in classical
AM. We shall refer to m as the envelope variation.
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In the computer programs used to obtain the data below, amax and

am- have been computed as follows. The envelope peak always occurs at

the beginning of the pulse (as in Figure 3). Hence amax is equal to

IW1TUd1/IWoTUdI. The minimum envelope, on the other hand, can occur at

different times. In some cases am.n occurs during the pulse, and in

others at the end of the pulse. (Figure 3 shows a case where a occurs

during the pulse). To obtain the data below, a . has been found by

searching the interval 0 < t < T- for the smallest value of the envelope.

Using several computer programs, we have explored the behavior of

the peak ama x and the variation m as functions of the signal parameters.

In the following sections we summarize these results.

B. The Effect of Angle of Arrival

Desired signal modulation effects are large only when 0i is close

to ed . When 0i is far from ed' the variation m is small and the peak a
is large.

Figure 6 shows a typical result; it shows m as a function of O.

when 0d=O° and for fr ,=1 6=.01 and yd6 dB. Four different curves are

shown, for INR = 0, 10, 20, and 30 dB. It is seen that large values of m
occur only when e. : Ed* One finds that this conclusion holds true re-

gardless of the particular ed. (Note that Figure 3, which shows a case

with large modulation, is for od = 00, ei = 50).

m is small unless 0i ed for the following reason. With pulsed

interference, the weight vector swings back and forth between P-IS and
0

o iS. A large modulation is produced only if the desired signal response
p

with weight vector oK1S is substantially different from that with o&'S.
p 0

It turns out that these two responses are different only when the interfer-

ence signal is near the desired signal. To illustrate this, let a
0

be the desired signal response of the array with W = o-IS and a beo p

An exception to this occurs if the interference causes a grating null in
the desired signal direction. In the discussion here, it is assumed that
the element patterns and spacings have been chosen to avoid grating nulls
[17].
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the response with W = o1IS (i.e., with CW interference). Figure 7 shows

a plot of a p/a0 as a function of 0i under the same conditions as in Figure

6 (ed = 0 ard d = 6 dB). As may be seen, desired signal suppression with

CW interference is large only if the interference is close to the desired

signal.

Figure 8 shows the peak amax as a function of 0 i for od 
= 0

6 dB, fr = 1000 and 6 = .1. (The values of f and 6 used here
differ from those in Figure 6. The reason for these choices will be clear
after the effects of fri and 6 on signal modulation have been discussed

below). Figure 8 shows that amax differs from unity only when i = od .

I.e., the interference must be close to the desired signal to cause a

large suppression of the peak. This result occurs for the same reason
discussed above. The desired signal response with weight vector O-IS

pmust be smaller than with weight vector oIS for the interference to
0

suppress the peak.

In essence, modulation effects are large only if the interference
and desired signals are too close for the array to resolve. However, it

should be noted that continuous interference also causes difficulty in

this case. With continuous interference, there is no modulation, of

course, but the SINR drops as 0i approaches od.
C. The Effect of PRF
The variation m and peak a are large at low PRF and drop as

max
the PRF increases.

Consider the case where the pulse width is fixed. (The effect of

pulse width is discussed in Part D). Figures 9 and 10 show m and a
max

as functions of fr' for Ed =6 dB, Fi = 40 dB, 0d =00 and T' = .0001.

Several curves are shown in each figure for different 0. near 0d It is

seen that m and area x are large for small fr and drop as f becomes large.

(Also, note that m decreases and amax increases as oi gets farther from
0d , as discussed in Part B).

This behavior occurs for the following reason. The value of T'

used in Figures 9 and 10 is large enough that there is sufficient time

during the pulse for the weights to change substantially in response to the

interference. At low PRF, there is also enough time between pulses for

the weights to return to the values they would have no interference. But
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at high PRF, the weights do not have time to recover from the interference,

so the variation is reduced and the peak drops.

If m and aax are computed versus fr' with the duty cycle held

constant instead of the pulse width, the same conclusion still holds:

m and amax are large for small f and drop as f ' increases. Curves of

" and ama x versus f for fixed 6 are presented below in Part D. (Figures

17-22).

D. The Effect of Pulse Width and Duty Cycle

The longer the pulse width, the more quickly m and a change

with f rr
Figures 11-16 illustrate this behavior. Figures 11-13 show m versus

fr ' as in Figure 9, but with T' = .001, .01 and .1. (When f ' = /t'

the interference is actually CW, so thp curves stop at this value of f 'r

Note that as t' becomes larger, m drops more quickly as a function of
fr' Figures 14-16 show amax as a function of fr' for the same values
of T' . (Compare these curves with Figure 10 for r' = .0001). Again, the

range of f 'r over which amax changes becomes smaller as -' increases.

The reason for this behavior is as follows. For low values of

f ', T' has little effect on the time between pulses. But as T' is made

larger, the time between pulses drops more quickly as f ' is increased,r
As the time between pulses drops, so do m and amax' because when this

time is too short the array cannot recover between pulses.

Figures 11-16 have been computed for constant pulse width. It

is also interesting to examine m and area x as functions of fr' for constant

duty cycle, instead of pulse width. Figures 17-19 show m versus f r
with 6 = .0001, .001 and .01, and Figures 20-22 show a versus fV for

the same 6's. Comparing Figures 17-19 shows that as 6 is raised, m

remains large up to higher values of fr . Figures 20-22 sbow, however,r
that the value of f ' at which a begins to drop below unity is notr t
affected by 6. (a begins to decrease around = 3, regardless of 6).

Increasing 6 merely causes the smnallest value of amax (at high f ) to

decrease.
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E. The Effect of Signal-to-Noise Ratios

m is largest and amaax is smallest for low SNR and high INR. As

the SNR is increased or the INR is decreased, m decreases and amax increases.

Figures 23-26 illustrate these remarks. Figure 23 shows m versus
f ',for r' =.01 =0°,
sral T=0001, Rsd' e =100 and INR = 40 dB. Curves are shown for

several SNR's between 20 and 50 dB. Figure 24 shows m versus f ' forr
SNR=10 dB and for several INR's between 20 and 45 dB. As may be seen,

m is maximum for low SNR and high INR and decreases as the SNR increases

or the INR decreases. Figure 25 shows amax versus fr' for INR=40 dB and

for -10 dB < SNR < 20 dB, and Figure 26 shows amax versus f for SNR=O dB
and -10 dB < INR < 40 dB. We see how the lowest value of amax (at large

fr ) increases as the SNR increases. Decreasing the INR moves the curves

of ax versus fr' farther to the right. For a given fr', the result is

that decreasing the INR will increase max

F. Frequency Dispersion

Next we consider the frequency dispersion of the array with pulsed

interference. As we have seen, pulsed interference results in a periodic

envelope modulation of the output desired signal. Hence the output desired

signal has a line spectrum with harmonics at multiples of the pulse repe-

tition frequency. We may determine the frequency dispersion of the array

by computing the Fourier coefficients Cn in (46) as a function of the

signal parameters.

Unfortunately, space does not allow us to show an exhaustive set

of spectra here. Instead, we shall content ourselves with a few typical

results.

First, Figure 27 illustrates the effect of pulse width on the
0 0

spectrum. These spectra are for od=0, 0=5 , SNR=O dB, INR=30 dB and

fr'=1. Spectra are shown for several values of T' between .00001 and

.05. The plots show IcnI in dB (20 log10 ICnI) plotted versus frequency

over the frequency range ' - 125< f' < f' + 125, where fI is (norm-
0- -0 0

alized) carrier frequency. Thus, the curves show 125 harmonics on either

side of the carrier. It may be seen that witi -t'=.00001 there is almost

no frequency dispersion, but as r' is increased the spectrum covers a wider

frequency range and becomes more complicated.

. • .. , ,
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Next, Figure 28 shows spectra illustrating the effect of changing

the pulse repetition frequency. These plots show JCnj versus frequency

for the same conditions as in Figure 27 except now T'=.001 and fr' is

varied. Spectra are shown for four different fr': 10, 50, 100 and 500,

and are plotted over the frequency range f0'-12500 < f' f0' + 12500.

Note how the bandwidth of the modulation changes with fr

In general, many different spectral patterns may be obtained as the

signal parameters are varied. If f r' is large, the spectrum may extend

very far from the carrier. However, the overall bandwidth does not ex-

ceed a value determined by the signal powers. That is, the powers control

the eigenvalues of 0 and hence the speed of the array weights. The

spectrum always tapers off beyond the frequency range where the weights

are too slow to respond.

G. Bit Error Probability

Finally, in this last part, we evaluate the effect of the time-

varying SINR discussed in Part A by computing its effect on bit error

probability when the desired signal is a digital communication signal.

To have a specific case to consider, we arbitrarily assume the
desired signal is a differential phase shift keyed (DPSK) signal of the

form [18]

Ae 0 t + * d + a d(t) ]  (57)

where ad(t) is 0 or r on each bit interval of length Tb. a d(t) is obtained

by differentially encoding the source bits [18]. We again assume that the

0 reference signal is a replica of the desired signal.

Before discussing the bit error probability, we point out that

changing the desired signal to a biphase modulated signal,, instead of a

CW signal, will have no effect on the array weights. As long as the

bandwidth is not excessive, the covariance matrix o is the same as for a

CW signal. (Also, it has been shown [19] that desired signal bandwidth

has almost no effect on array performance anyway, even if the bandwidth

is large). Moreover, if the reference signal is replica of the desired
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signal, the reference correlation vector S is also unchanged. Since both

t and S are the same, the weight behavior will be the same with this

signal as with the CW signal.

Because pulsed interference does not produce phase modulation on

the desired signal, the only effect of the interference on system perfor-

mance will be to vary the array output SINR and hence increase the bit

error probability. For a DPSK signal in white noise, the bit error

probability pe is given by [20]:
1 -Eb/No

P = 1 e , (58)2[

where Eb is the signal energy per bit and N is the one-sided thermal

noise spectral density. For our purposes, it is convenient to express

Eb/No in terms of signal-to-noise ratio. Since Eb = PdTb , where Pd is

signal power and Tb is the bit duration, and since i/Tb is the effective

noise bandwidth, No/Tb is the received noise power and we may write

Eb Pd

- = SNR. (59)
N 0 (No/T b)

In addition, for this analysis we shall assume the interference power at

the array output has the same effect on detector performance as thermal

noise power. In this case, the bit error probability may be written

1 _-SINR (60)P e -e (60
2

Finally, since pulsed interference causes the SINR to vary periodically,

we obtain the effective bit error probability Pe by averaging Pe over one

period of the interference:

IT r 1e-SINR(t) dt. (61)e Tr 02
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This calculation is valid as long as the bit rate is large compared

with the interference PRF, which we assume to be the case.

Figure 29 shows typical curves of bit error probability computed

in this manner. These curves show Pe as a function of PRF for 
0d = 00,

9. =300, SNR = 6 dB, T ' = .0001 and for four INR's: 10, 20, 30 and 40 dB.
It is interesting to note that intermediate values of f r produce the

greatest e For low or high f , the interference has less effect.e r
Also, values of INR less than 10 dB or greater than 40 dB produce lower

values of P than those shown in Figure 29.
e

The curves in Figure 29 are for od = 0° and oi = 300, i.e., for

a large angular separation between signals. As oi is brought closer to

both the peak P and value of f ' at the peak rise. Increasing the
d e r
separation between e and od does not change the results much, however.

The curves in Figure 29 are typical of what is obtained when the two signals

are far enough apart to be resolved by the array.

It is also interesting to see how the other signal parameters

affect the value of f ' at the peak P . As may be seen in Figure 29,r e
the value of f ' at the peak depends somewhat on the INR. The higher ther
INR, the lower the fr. It turns out that the SNR and the pulse width

also have some effect on the value of fr' at peak Pe . As the SNR or the

pulse width increase, the value of f at the peak drops.r

Similar results have been obtained by Reinhard, based on experimental

measurements [21].

4/
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IV. CONCLUSIONS

Pulsed interference has two effects on an adaptive array receiving

a desired signal. First, it produces envelope modulation of the desired

signal and second, it causes the array output SINR to vary. When the

array is used in a digital communication system, this varying SINR results

in an increased bit error probability.

The desired signal modulation depends on the signal parameters as

follows:

(1) The envelope variation is small and the envelope peak is

large unless the interference angle is close to the desired

signal angle.

(2) The envelope variation and peak are both largest at low inter-

ference PRF and drop as the PRF increases.

(3) The envelope variation and peak change more quickly with

PRF as the pulse width is increased.
(4) The envelope variation is largest for low SNR and high INR.

The envelope peak is largest for high SNR and low INR.

(5) Pulsed interference does not produce phase modulation on

the desired signal after the initial transient.

Since the array modulates the desired signal, the array becomes a

frequency dispersive channel. Typical frequency spectra of the array

output desired signal were shown in Figures 27 and 28.

Pulsed interference causes the array output SINR to vary with time.

When the array is used in a digital communication system, the result is

to increase the bit error probability. The largest bit error probability

occurs for interndiate values of interference PRF. Typical curves are

shown in Figure 29.

i If
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